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Abstract Numerical evidence on the relevance of the initial conditions to the Fermi-Pasta-
Ulam problem is reported, supported by analytic estimates. In particular, we analyze the
special, crucial role played by the phases of the low frequency normal modes initially ex-
cited, their energy being the same. The results found are the following. When the phases
of the initially excited modes are randomly chosen, the parameter ruling the first stage of
the transfer of energy to higher frequency modes turns out to be the energy per degree of
freedom (or specific energy) of the system, i.e. an intensive parameter. On the other hand,
if the initial phases are “coherently” selected (e.g. they are all equal or equispaced on the
unit circle), then the energy cascade is ruled by the total energy of the system, i.e. an ex-
tensive parameter. Finally, when a few modes are initially excited, in which case specifying
the randomness or coherence of the phases becomes meaningless, the relevant parameter
turns out to be again the specific energy (this is the case of the original Fermi-Pasta-Ulam
experiment).

Keywords Fermi-Pasta-Ulam problem · Energy transfer · Scaling laws

1 Introduction

In the present paper we focus our attention on the classical Fermi-Pasta-Ulam problem [1],
which consists, as is well known, in understanding and characterizing the path to energy
equipartition among normal modes of a one-dimensional oscillator chain, when a small
subset of long wavelength modes are initially excited. Since the original FPU experiment,
the most studied model is defined by the Hamiltonian
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α and β being the nonlinearity constants. We consider the case of fixed ends, i.e. q0 =
qN+1 = 0; N is the number of degrees of freedom of the system. For such a model the
only quantities that determine the dynamics up to a rescaling are the products α2ε and βε,
where ε = E/N is the specific energy, with E denoting the total energy of the chain. In our
numerical analysis we have chosen1 α = −1 and β = 0.6. The normal modes of the system
are given by

Qk =
√

2

N + 1

N∑

n=1

qn sin
πkn

N + 1
, Pk =

√
2

N + 1

N∑

n=1

pn sin
πkn

N + 1
, (3)

while the dispersion relation (frequency vs. mode index k) is

ωk = 2 sin
πk

2N + 2
, k = 1, . . . ,N. (4)

To each mode k one can associate a harmonic energy

Ek = 1

2

(
P 2

k + ω2
kQ

2
k

)
(5)

and a phase ϕk defined by

Qk =
√

2Ek/ω
2
k sinϕk, Pk = √

2Ek cosϕk. (6)

Relevant variables of the problem are the time averages of the mode energies,

Ek(t) = 1

t

∫ t

0
Ek(Qk(t

′),Pk(t
′))dt ′, k = 1, . . . ,N.

As was first shown by FPU, and then studied systematically in many papers (for a survey
see [2, 3]), the first stage of the dynamics, taking place on a relatively short time-scale τ1,
consists in a partial transfer of energy from long to smaller wavelengths till a cut-off, so as to
produce a long-life metastable state in which an “effective number” M1 < N of degrees of
freedom are practically involved in the energy sharing. A possible definition of the effective
number M of energy sharing degrees of freedom, associated to a given energy spectrum Ek ,
is [4, 5]

M = expη, (7)

1Let us recall that the qn’s have the meaning of displacement of the particles from the equilibrium positions,
so that the argument qn+1 − qn of the interaction potential V represents the excess length of the nonlinear
“spring” connecting the particles; the negative sign of α is then spontaneous, if one thinks that compressed
springs get harder (as with molecular potentials). Note that changing the sign of α is also equivalent to
advancing all phases of the normal modes by π .
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where η, the so-called spectral entropy [6], is in turn defined as

η = −
N∑

k=1

Fk logFk, where Fk = Ek∑
j Ej

.

We shall often refer to the fraction

f = M/N

of the effectively energy-sharing modes, and denote in particular f1 = M1/N .
Nowadays it is generally accepted [6–10], on the basis of both numerical calculations and

analytical arguments, that on a second time-scale τ2, much larger than τ1 for small energy,
the metastable state breaks down and the system eventually relaxes to an equilibrium state
compatible with the laws of statistical mechanics and consistent with the equipartition of
the energy: indeed for t > τ2 it is M(t) � N , so that all modes share on average the same
amount of energy.

An example of such a behavior—often called “the FPU scenario”—is presented in Fig. 1.
The left panel shows the energy spectrum, more precisely the ratio Ek(t)/ε plotted vs. k/N ,
at different times in geometric progression; the chain contains N = 1024 oscillators, the
energy density is ε = 2.5 × 10−4, while the total energy has been initially equidistributed
among the 10% of lowest frequency modes, with random initial phases ϕk , uniformly dis-
tributed in the interval [0,2π ]. Quite soon, for (t � 103) a well defined profile is formed, in
which only some low frequency modes effectively take part to energy-sharing, the energies
of the remaining ones dacaying exponentially with k/N . The energy profile keeps its form
nearly unchanged for a rather large time-scale, definitely much larger than the time needed
to form it. Afterwards the dynamics slowly evolves towards energy equipartition, the high-
frequency modes being progressively involved into the energy-sharing mechanism.2 The

Fig. 1 Left: the energy distribution among normal modes at different times; data: N = 1024, ε = 2.5×10−4,
energy initially equidistributed among 10% of modes of low frequency; times as indicated inside the figure.
Right: the effective number of degrees of freedom M as a function of time, for the same dynamics and for
ε = 10−3

2The curves in the figure are a little smoothed: each point is indeed the average of a few nearby points.
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right panel of the figure reports, for the same dynamics, f versus t (for comparison, we also
show the same dynamics for ε = 10−3).

The onset of the plateau in the figure identifies rather clearly, although qualitatively, the
time-scale τ1 which is necessary for the formation of a metastable state, which lasts until f

remains close to f1. Such a scenario is widely described and emphasized in [11] and [12]
(for further comments see also [13]).3

In the light of this scenario, a fundamental question poses, and in fact was raised since
the very beginning of the literature on FPU [14], namely whether the scenario does persist
in the so-called thermodynamic limit, or it is instead a finite-size effect which disappears if
N → ∞ at fixed specific energy ε = E/N . In this perspective, it is crucial to analyze the
dependence of quantities like τ1, f1 and τ2 on the thermodynamic limit. Another relevant
parameter to be taken into account is the number M0 of the initially excited modes. Indeed,
when N → ∞ one can keep fixed either the fraction f0 = M0/N of initially excited modes
(as it should be done in a genuine thermodynamic perspective, since this corresponds to
exciting modes up to a fixed frequency), or their number M0 (in this case f0 vanishes in the
thermodynamic limit).

As a matter of fact, one finds in the literature quite different answers to the above ques-
tion, with numerical results that apparently are not compatible. To be definite, we shall focus
our attention on two manifestly diverging results, especially stressed in paper [15] and in the
papers [10, 11] (see also, however, [12] and [9], and for comments [13, 16]). In the former
study, numerical evidence is produced that the FPU scenario persists, in the thermodynamic
limit, only if M0 is kept fixed; instead for fixed f0 the FPU scenario disappears, unless the
total energy E, rather than the specific energy ε, is kept fixed when N → ∞. In [10, 11]
instead, an opposite numerical evidence is obtained: indeed the whole scenario, and specifi-
cally two of the above mentioned quantities, f1 and τ2, are shown to be independent of the
thermodynamic limit, even for thermodynamic initial data with f0 = M0/N kept fixed.

The particular models considered in these papers are not identical, nor is identical the
definition of M , which in turn is at the basis of the computation of τ1, f1 and τ2. On the
other hand, after a careful inspection one can conclude that none of such differences seems
to be really crucial. However, there remains an apparently irrelevant difference concerning
the recipe adopted for the choice of the phases of the initially excited normal modes. Indeed,
in [15] the phases are coherent (more precisely, ϕk = π/2, so that the initial energy is purely
potential), while in papers [10, 11] the phases are incoherent, namely chosen randomly and
uniformly distributed in the interval [0,2π ]. As we are going to show, this makes a big
difference: unexpectedly, initial phases turn out to play a crucial role in determining the
FPU scenario.

Illustrating the role of phases in the classical FPU problem is the principal aim of the
present paper. In the first part of the paper (Sect. 2) we present a detailed numerical study
on the formation and persistence of the metastable state. In particular, we show that, for
given values of N , E and M0, the quantity f (t) depends in an important way on the phases:
coherent phases produce definitely larger values of f (t) than random phases; moreover,
different choices of coherent phases produce different results, while different samples of
random phases give rise to almost identical f (t). Beyond this qualitative remark, we produce
evidence that, when N , ε and M0 (or f0) are varied, the dynamics obeys some simple scaling
laws. The main outcomes in this direction can be summarized as follows:

3Different quantitative definitions of τ1 could be provided, and are indeed provided in the literature by the
different authors, depending on their aims. The scaling analysis we shall produce in this paper, however, looks
at the curve M(t) as a whole, and does not need such a quantitative notion. A precise identification of τ2 is
even less necessary, since we are not investigating here the eventual relaxation of the system to equilibrium.
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A. If M0 is kept fixed and N is large, then for any choice of the initial phases one has
f1 ∼ ε1/4 and τ1 ∼ ε−3/8N3/2. Such a result is in agreement with both [15] and [10, 11].
We wish to point out that in the thermodynamic limit, in order to keep ε fixed, one must
store an increasing amount of energy in the excited modes. Nonetheless, this energy
needs to be transferred to an increasing number of modes, and eventually τ1 is found to
diverge with N . The stability of this result for large N at fixed M0 and ε was observed in
particular in [15] (in the case of coherent phases). Let us stress again that such conditions
do not correspond to the genuine thermodynamic ones, where both ε and f0 should be
fixed in the limit N → ∞.

B. If instead f0 = M0/N is kept fixed, it becomes necessary to distinguish between random
and coherent initial phases:
B1. For random initial phases, one has f1 ∼ ε1/4 and τ1 ∼ ε−3/8f

−3/2
0 , both quantities

being independent of N . Accordingly, such conditions imply the persistence of the
FPU scenario in the thermodynamic limit. This result is in agreement with [11]
(where, in particular, the law f1 ∼ ε1/4 is stressed) and [10].

B2. For coherent initial phases, one has instead f1 ∼ (f0E)1/4 and τ1 ∼ E−3/8f
−3/2
0 . In

such a case, E rather than ε is the relevant scaling variable and the persistence of
the FPU scenario in the thermodynamic limit is ruled out, as observed in [15].

Let us remark that the energy cascade from low to high frequencies always implies f0 < f1.
Thus, in the above mentioned case B1 one has τ1 ∼ ε−3/8f

−3/2
0 > ε−3/8f

−3/2
1 ∼ ε−3/4, which

gives a sharp lower bound to the time-scale τ1 in agreement with the numerical estimate
given in [12] (in the case B2, ε should be replaced by E). As far as we know, the scaling
f1 ∼ ε1/4 and the presence of a time-scale ∼ ε−3/4 were first analytically predicted in [17].

In the second part of the paper (Sect. 3), we then produce some simple theoretical esti-
mates, which provide a preliminary explanation of the above mentioned numerical results.
Such a theoretical investigation is based on a suitable resonant normal form of the FPU sys-
tem, on its relation to the Korteweg-de Vries (KdV) equation and on the scaling properties
of the latter equation. A more complete theoretical understanding of the problem, however,
certainly demands a further effort; see for a sketch the last section, where perspective and
conclusions are discussed.

2 Numerical Studies

We begin this section by producing qualitative evidence that initial phases are relevant for
the FPU scenario. Figure 2 reports f = M/N vs. t for four different samples of random
phases (lower bunch of curves) and five different choices of coherent phases, namely ϕk(0)

constant for all k < M0 and equal to 0, π/4, π/2, 3π/4, π . The parameters are N = 1024,
ε = 2.5 × 10−4, M0 = 102. The different behavior between random and coherent phases,
and among different choices of coherent phases, is rather evident. Other choices of coherent
phases, for instance ϕk(0) = kψ with some ψ for k ≤ M0, produce curves similar to those
obtained for coherent phases, dispersed as they are in the figure.

We then proceed by stating and testing numerically some scaling laws, which are obeyed
by the dynamics and imply, and make precise statements A and B in the introduction. Scaling
laws concern the behavior of f as a function of t , N , ε and either M0 or f0. In order to
distinguish the two cases we introduce slightly different notations:

f (t,N, ε,M0) or f̂ (t,N, ε, f0).
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Fig. 2 M vs. t for four different
samples of random phases (lower
bunch of curves) and five
different choices of coherent
phases (upper curves), namely
ϕk(0) = 0, π/4, π/2, 3π/4 and
π for all of the excited modes.
Parameters: N = 1024,
ε = 2.5 × 10−4, M0 = 102

A. Scaling Laws Valid for all Initial Phases Here we state two scaling laws, which concern
conditions in which the number M0 of initially excited modes is kept fixed, and are inde-
pendent of the choice of the phases. The first of them, which we consider to be in a sense
the fundamental one, is

f (λ−3/4t, λ−1/4N,λε,M0) = λ1/4f (t,N, ε,M0). (8)

Figure 3 shows the scaling law at work, for random phases (upper panels) and regular phases
(lower panels; actually ϕk(0) = π/2 for all the excited modes). The left panels show f vs. t

as it is, without rescaling, while in the right panels the curves are rescaled according to (8).
More precisely, we took eight different values Nj and εj according to

Nj � λ
−1/4
j N∗, εj = λjε

∗,

with N∗ = 4096, ε∗ equal to 2.5 × 10−4 for random phases and to 10−5 for coherent phases,
and

λj = 2−j+2, j = 0, . . . ,7.

In the right panels the curves are multiplied by λ
−1/4
j and left shifted by 3

4 logλj ; quite
clearly, both for the random and for the coherent phases, the rescaled curves beautifully
superimpose. One could wonder how a cumbersome scaling relation like (8) could come
to our mind. The expert reader should have realized that such a law reproduces exactly the
scaling group of the KdV equation. There are of course deep reasons for this: they will be
explained in some detail in Sect. 3 (see in particular Sect. 3.2) and more extensively analyzed
in a paper in preparation [18].

The second scaling law, independent of the previous one and valid asymptotically for
large N , is

f (μ3/2t,μN,ε,M0) = f (t,N, ε,M0). (9)

It shows that by varying N at constant M0 and ε, the time scale changes, but the height
f1 of the plateau does not. Figure 4 illustrates such a scaling law. As in Fig. 3, the upper
panels refer to random initial phases, while the lower panels concern coherent phases, with
ϕk(0) = π/2 for k ≤ M0. The left panels show f as a function of t , while the right panels
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Fig. 3 A test of the basic scaling law (8). Upper panels: random initial phases; lower panels: coherent initial
phases (ϕk = 0 for k ≤ M0). See the text for the value of the parameters. The plotted quantity is f vs. t , as it
is (left) and after rescaling (right)

include rescaling. Notice that in this case the plateau is not touched by the rescaling, which
reduces here to a horizontal translation of the curves in the panel by − 3

2 logμ. The chosen
parameter values are ε = 2.5 × 10−4, N = 1024, . . . ,16384, M0 = 26. The rescaled curves
superimpose exactly on the plateau, while in the transient they do only for large N , when
f0 = M0/N is negligible (in the absence of vertical rescaling, curves with different f0 cannot
superimpose for small times).

By combining together (8) and (9) one obtains

f (μ3/2λ−3/4t,μλ−1/4N,λε,M0) = λ1/4f (t,N, ε,M0); (10)

in particular, for μ = λ1/4, (10) becomes

f (λ−3/8t,N,λε,M0) = λ1/4f (t,N, ε,M0). (11)

As an exercise, such a scaling law can be tested directly. The result is shown in Fig. 5 for
N = 1024, M0 = 3, ε = 2−j × 10−3 with j = 0, . . . ,6, coherent phases ϕk(0) = π/2 for
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Fig. 4 A test of the scaling law (9). Upper panels: random initial phases; lower panels: coherent initial
phases (ϕk = π/2 for k ≤ M0). Parameters: ε = 2.5 × 10−4, N = 1024, . . . ,16384, M0 = 26. The plotted
quantity is f vs. t , as it is (left) and after rescaling (right)

k = 1,2,3 (random phases would be meaningless for M0 = 3). As before, the right panel
includes rescaling. It is worthwhile to observe that the rescaled curves do superimpose till
they reach the plateau, but do not anymore for larger times, when they leave the plateau
towards equipartition. We shall come back to this point in the conclusions.

An equivalent formulation of (10) is

f (t,N, ε,M0) = ε1/4 F (ε3/8N−3/2t,M0), (12)

F being a suitable function of only two variables (depending of course on the choice of the
initial phases). Such a relation implies statement A in the introduction.

B1. The Thermodynamic Limit for Random Initial Phases If the initial phases are chosen
randomly, ε and f0 (rather than M0) are kept fixed, and N is sufficiently large, then f is
independent of N , i.e. the model exhibits nontrivial thermodynamic limit properties. This
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Fig. 5 A test of the scaling law (11). Parameters: N = 1024, . . . ,8192, ε = 10−3, . . . ,1.56×10−5; M0 = 3,
ϕk = π/2 for k = 1, . . . ,3. The plotted quantity is f vs. t , as it is (left) and after rescaling (right)

Fig. 6 A test of the scaling law (13) (left panel) and of the scaling law (15); the parameter values are reported
inside the figures

situation can be translated in the language of scaling laws as follows:

f (t, �N, ε,�M0) = f (t,N, ε,M0), (13)

or equivalently

f̂ (t, �N, ε,f0) = f̂ (t,N, ε, f0). (14)

Figure 6 illustrates this scenario. The left panel shows two bunches of curves obtained
for f0 = 0.025 and N = 2048, 4096, 8182, 16384; the lower and the upper ones correspond
to ε = 2.4 × 10−4 and ε = 10−3, respectively. The number N of degrees of freedom is mani-
festly irrelevant. According to the previous scaling laws, the two bunches must superimpose
their plateau if they are rescaled vertically proportionally to ε1/4; the result is shown in the
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Fig. 7 The failure of the thermodynamic limit for coherent initial phases, namely ϕk(0) = π/2 (left panel)
and ϕk(0) = kπ/2 (right panel); the values of the parameters are reported inside the figures

Fig. 8 The failure of the thermodynamic limit for coherent initial phases: a test of the scaling law (16) for
ϕk(0) = π/2 (left panel) and ϕk(0) = kπ/2 (right panel); the parameter values are reported inside the figures

left panel. An equivalent formulation of (14), keeping into account (12), is

f̂ (t,N, ε, f0) = ε1/4 G(ε3/8f
3/2
0 t), (15)

G being a suitable function of a single variable.

B2. The Failure of the Thermodynamic Limit for Coherent Phases For coherent initial
phases, thermodynamic limit properties are lost when N is increased for fixed ε and f0.
This is evident from Fig. 7, where we report f as function of t for fixed ε = 2.5 × 10−4 and
f0 = 0.1, N ranging between 256 and 16384. The left panel refers to equal initial phases,
namely ϕk(0) = π/2 for all excited modes, while the right panel refers to ϕk(0) = kπ/2.
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As remarked in [15], a scaling law is recovered if the total energy E is kept fixed, instead
of ε. More precisely, both the level of the plateau and the time needed to reach it are found
to scale according to the relation

f̂ (t, �N,�−1ε,f0) = f̂ (t,N, ε, f0). (16)

Such a behavior is illustrated in Fig. 8, which refers to E = 0.512 and f0 = 0.1, with N

ranging between 512 and 16384. The left and right panels refer to the same kind of coherent
initial phases as in Fig. 7. A good superposition is obtained for N large enough.

We wish to remark that the choice of coherent initial phases favours the flow of energy
to higher wavelength modes, although a plateau is formed also in this case. This again
confirms the peculiarity of the “packet-like” initial conditions, which always yield the for-
mation of a metastable state, irrespectively of the choice of the initial phases. Nonetheless,
only random initial phases guarantee the persistence of the FPU scenario in the thermody-
namic limit. In the next section we are going to provide some theoretical argument to explain
the origin of this unexpected situation.

3 Theory

In order to describe the FPU scenario, it looks reasonable to exploit an effective represen-
tation of the model adapted to the class of initial conditions (packets of long-wavelength
modes) taken into account in the early numerical experiments as well as in the above de-
scribed ones. Indeed, passing directly to a continuum-like limit representation (which seems
reasonable in the case of long wavelength excitations), as Zabusky and Kruskal first did
in their celebrated paper [19], easily leads to the KdV equation, which with our choice of
notations and constants writes

Ut = 1

24
Uxxx + α√

2
UUx, (17)

with periodic boundary conditions:

U(x + L, t) = U(x, t), L = 2N + 2. (18)

Such an equation turns out to be fundamental not only in explaining the recurrence of the
initial datum in the problem, but also the quasi-integrability properties of the FPU dynamics
on short time-scales [20, 21], as well as the form of the energy spectrum [22]. However,
such a continuum limit, even though mathematically correct, hides somehow the way one
performs the large N limit, in that one approximates a finite-dimensional system with an
infinite-dimensional one. Instead, a “bridge” between the continuous approximation and the
standard perturbation theory for finite systems must be built up, and the discrete nature of the
problem has to be kept, in order to obtain a consistent approach to the thermodynamic limit.
As we are going to discuss in this section, one can obtain a suitable description of the FPU
scenario by considering the dynamics of the resonant normal form of the FPU Hamiltonian,
first introduced in [17]. As we shall see, a suitable rescaling transforms the normal form
equations of FPU into the so-called Fourier–Galerkin truncation to N modes of the 2N + 2-
periodic KdV equation. This provides a twofold support to the numerical results shown in
the previous section: (i) it explains the scaling properties of the observable f ; (ii) it allows
one to identify a criterion for understanding the different thermodynamic limit properties
emerging from the different choices of the initial phases.
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As a preliminary step, it is convenient to pass from the real coordinates (3) to the complex
coordinates

zk = Pk + iωkQk√
2ωk

, z∗
k = Pk − iωkQk√

2ωk

. (19)

These are nearly canonical, the only nonvanishing Poisson brackets being {zk, z
∗
k} = i, for

k = 1, . . . ,N . Elementary substitutions and trivial trigonometric identities transform Hamil-
tonian (1) into the new Hamiltonian (for which we do not change the notation)

H(z, z∗) =
N∑

k=1

ωk|zk|2 + iα

12
√

N + 1

×
N∑

j,k,l=1

S3(j, k, l)
√

ωjωkωl (zj − z∗
j )(zk − z∗

k)(zl − z∗
l ) + O(βz4), (20)

where the selector S3 of the mode-coupling is given by

S3(j, k, l) = δj+k,l + δj+l,k + δk+l,j − δj+k+l,2N+2, (21)

δn,m denoting the usual Kronecker delta. We wish to point out that in (20) we did not write
explicitly the fourth-order term, since it does not influence the result of the first step of nor-
malization that we are going to perform.4 The Hamilton equations read now żk = i∂H/∂z∗

k ,
ż∗
k = −i∂H/∂zk .

3.1 Resonant Normal Form

Let us shortly recall the idea underlying the construction of the resonant normal form for
the FPU problem first introduced in [17]. We follow here the approach first adopted in [23],
also reported in [24] (where it is also extended to the pure β-model), which consists in
normalizing the Hamiltonian in Fourier space; a complementary and equivalent normaliza-
tion procedure in ordinary space is instead used in papers [20, 21]. The core of the method
resides in the expansion of the dispersion relation (4)

ωk = ξk − 1

24
ξ 3
k + O(ξ 5

k ), ξk ≡ πk

N + 1
; (22)

the expansion is clearly adapted to the acoustic modes (small k), and to their approximate
resonance relation

ω1 � ω2/2 � ω3/3 · · · ,
with a decreasing level of approximation. As first pointed out in [25], this expansion pro-
vides a suitable description of the energy cascade mechanism in the FPU problem.

The quadratic part of Hamiltonian (20) is now split as follows:

N∑

k=1

ωk|zk|2 =
N∑

k=1

ξk|zk|2 +
N∑

k=1

(−ξ 3
k /24 + · · ·)|zk|2,

4In absence of the cubic nonlinearity, the normalization procedure sketched in this section yields a different
normal form, which corresponds to the periodic version of the modified KdV-equation (see [18]).
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and for initial excitations of acoustic modes, the sum

J (z, z∗) ≡
N∑

k=1

ξk|zk|2 (23)

is regarded as the unperturbed Hamiltonian of the problem: H = J +perturbation. Then, one
can perform a standard step of normalization (in the sense of canonical perturbation theory),
removing all the non-resonant terms in the perturbation at the leading order. Neglecting the
remainder, one is then left with the first order resonant normal form Hamiltonian of the
system

Hres(z, z
∗) = J (z, z∗) +

N∑

k=1

(−ξ 3
k /24

) |zk|2

+ iα

4
√

N + 1

N∑

j,k,l=1

δj+k,l

√
ξj ξkξl (z∗

j z
∗
kzl − zj zkz

∗
l ). (24)

(A minor abuse of notation was introduced, since we keep on calling z the new canon-
ical variables appearing in Hres.) Now, as a consequence of the normalization, one gets
{J,Hres} = 0, i.e. the dynamics of the normal form is characterized by the presence of a
second constant of motion [17]. This fact is conveniently taken into account by passing to
the co-rotating coordinates ζk [23] defined by

zk = ieiξk t ζk, (25)

where a π/2-phase shift is introduced for later convenience. The transformation z �→ ζ

is canonical5 and depends on time, in such a way to exactly erase the second integral J

from the right hand side of (24). One is thus left with the equivalent resonant normal form
Hamiltonian

K(ζ, ζ ∗) =
N∑

k=1

(−ξ 3
k /24

)|ζk|2 + α

4
√

N + 1

N∑

j,k,l=1

δj+k,l

√
ξj ξkξl(ζ

∗
j ζ ∗

k ζl + ζj ζkζ
∗
l ). (26)

Remarks

(i) The latter normal form is obtained by making use everywhere of the expansion (22) of
the dispersion relation of the system, which implicitly assumes that the active modes
participating to the dynamics are the low ones, only.

(ii) A more direct procedure to work out Hamiltonian (26) amounts to performing the time-
dependent canonical transformation (25) on Hamiltonian (20): one is left with H =
K + R, where R is the remainder, that displays explicit dependence on time through
oscillating factors, so that its formal time average, with the ζ ’s kept constant, vanishes
(this is the resonant averaging over the unperturbed motion a la Bogolyubov).

(iii) From (25) it follows that the initial phases of the ζk are those of the zk (namely the
initial values ϕ0

k ) decreased by π/2.

5As for the zk , the only nonvanishing Poisson brackets are {ζk, ζ∗
k
} = i, k = 1, . . . ,N .



886 G. Benettin et al.

The Hamilton equations associated to (26) are given by ζ̇k = i∂K/∂ζ ∗
k , namely

ζ̇k = − iξ 3
k

24
ζk + i

√
ξkα

4
√

N + 1

[
k−1∑

j=1

√
ξk−j ξj ζk−j ζj + 2

N−k∑

j=1

√
ξj ξk+j ζ ∗

j ζk+j

]
. (27)

(If expressed in terms of the action-angle variables (I, θ) defined by ζk = √
Ike

iθk , the
Hamiltonian (26) coincides with the one first derived in [17]; the use of the Cartesian-like
complex variables (ζ, ζ ∗), however, will be convenient below.)

3.2 The Truncated KdV Equation and the Basic Scaling Law (8)

It is convenient to introduce the new noncanonically rescaled energy variables

uk = √
ξkζk, k = 1, . . . ,N, (28)

in terms of which the equations of motion (27) transform to

u̇k = − iξ 3
k

24
uk + iξkα

4
√

N + 1

[
k−1∑

j=1

uk−juj + 2
N−k∑

j=1

u∗
juk+j

]
. (29)

There is a strong relation between (29) and the KdV equation (17):

Proposition The normal form (29) coincide with the Fourier–Galerkin truncation to the
first N modes of the KdV equation (17), with periodic zero average initial datum, namely
U(x + L,0) = U(x,0),

∫ L

0 U(x,0)dx = 0, where L = 2N + 2.

We recall that the Fourier–Galerkin truncation to N modes of the L-periodic field vari-
able U(x, t) is defined as

UN(x, t) = 1√
L

N∑

k=−N

Ûk(t)e
2πikx/L, (30)

where of course Ûk(t) = L−1/2
∫ L

0 U(x, t)e2πikx/L dx. The zero average condition on U im-
plies Û0 = 0. The reason of the choice L = 2N + 2 appearing in the proposition is simply
understood: the original discrete system with fixed ends at sites n = 0 and n = N + 1 can be
regarded as half a periodic system with sites ranging from n = −N to n = N + 1, the latter
being identified with site −N − 1.

The above proposition, whose simple proof is reported in Appendix, has deep conse-
quences. First of all, it shows that the KdV equation is not just one among other possible
continuum limits of the FPU chain, rather it plays a unique role, since it is close to the
resonant normal form equations derived by the means of Hamiltonian perturbation theory.
Second, it predicts that by increasing N , many features of the dynamics tend to regularize,
since the normal form dynamics, close to the true dynamics, becomes closer and closer to
the dynamics of the KdV equation (17). This provides, in our opinion, a strong support to
the idea [19] that the integrability properties of the KdV equation might explain straight
away the strong memory of the initial data displayed by the FPU dynamics.

For what concerns the thermodynamic limit, we stress that one should not be tempted to
roughly perform the limit N → ∞ in the KdV problem (17), (18). Indeed, as N increases,
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the length of the periodicity interval also increases. One can actually rescale the space and
time variables x and t setting x = LX, and t = LT , in terms of which (17) reads

VT = 1

24L2
VXXX + α√

2
V VX, (31)

for the 1-periodic unknown field V (X,T ) = U(LX,LT ). One thus sees that performing
the limit N → ∞ in the KdV equation (17) amounts to studying the zero dispersion limit
L → ∞ of the KdV equation (31) on a fixed interval of length 1, which is a highly nontrivial
problem; see e.g. [26]. In such a respect, notice that in papers [20, 21] a particular subclass
of initial condition was chosen, such that the KdV equation (31) does not display the small
coefficient 1/L2 in front of the dispersive term. Such a nontrivial “simplification” takes
place by exciting a mode (and its higher harmonics) of index k0 such that k0/N ∼ ε1/4,
and allows to rigorously justify the normal form construction. Unfortunately, the results of
[20, 21] do not apply in a simple way to the case considered here of extended, packet-like
initial excitations.

We do not proceed further in such a direction, which will be reconsidered elsewhere [18],
but limit ourselves to use the normal form (29) to support, by means of a simple scaling
analysis, the numerical results reported in Sect. 2.

The first of them, namely the scaling law (8), is an immediate expression of the funda-
mental group of invariance of the KdV equation (17), which turns out to be

U → λ1/2U, t → λ−3/4t, x → λ−1/4x, L → λ−1/4L,

λ being any positive number. The connection with (8) is indeed straightforward, if we take
into account that the length L of the periodicity interval of the FPU problem is (almost)
proportional to N , and recall that f is, basically, a wave number, which scales as an inverse
length and so as λ−1/4.

Explaining the other numerically observed scaling laws requires some further work,
which will occupy the next Sects. 3.3 and 3.4.

3.3 Rescaling

For later purposes, we observe that in terms of the u-variables the second integral J now
reads

J =
N∑

k=1

|uk|2 ≡ Nεa, (32)

where we have defined the specific acoustic energy εa = J/N . In the perturbative regime
considered here (where H = J + perturbation) this is close to the true specific energy ε =
H/N . Indeed,

|uk(t)|2 = ξk|ζk(t)|2 = ξk|zk(t)|2 � ωk|zk(t)|2 = Ek(t), (33)

this approximation being valid as long as the dynamics involves long wavelength modes
only, so that ωk � ξk . Accordingly, the variables uk represent the complex amplitudes of the
modal energies Ek , which are used to build up the spectral entropy. Moreover, it follows
from (25) that

uk(0) = −i
√

ξk zk(0) = −i
√

ξkEk(0)/ωk eiϕk(0) � √
Ek(0) ei(ϕk(0)− π

2 ),
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the approximation being valid as long as only low-wavenumber modes are initially excited.
The initial data in terms of the new u variables read

uk(0) =
{

−i
√

E eiϕ0
k for k = 1, . . . ,M0,

0 for k = M0 + 1, . . . ,N
(34)

and correspondingly the conservation law (32) implies

M0 E = Nεa. (35)

This is a basic relation that can be used to eliminate the quantity E and rewrite the initial
value problem (29), (34) as follows:

iu̇k = ξ 3
k

24
uk − ξkα

4
√

N + 1

[
k−1∑

j=1

uk−j uj + 2
N−k∑

j=1

u∗
j uk+j

]
, (36)

uk(0) =
{√

Nεa

M0
e(iϕ0

k
−π/2) for k = 1, . . . ,M0,

0 for k = M0 + 1, . . . ,N .
(37)

We now perform a suitable rescaling (uk,N, t) �−→ (vk, N , T ) of the dynamical variables,
of time and of the number of degrees of freedom N , namely

uk = √
Nεa vk, N = N /(α2εa)

1/4, t = T/(α2εa)
3/4; (38)

the rescaling of N also implies the rescaling of the specific wavenumber ξk = πk/(N + 1),
namely

ξk �→ ηk = πk

N
= (α2εa)

−1/4ξk. (39)

In terms of the new variables vk , N , T and ηk , (36)–(37) for large N transform to:

i
dvk

dT
= η3

k

24
vk − ηk

4

[
k−1∑

j=1

vk−j vj + 2
N /(α2εa)1/4−k∑

j=1

v∗
j vk+j

]
, (40)

vk(0) =
{

1√
M0

ei(ϕ0
k
+π/2) for k = 1, . . . ,M0,

0 for k = M0 + 1, . . . , N /(α2εa)
1/4.

(41)

Notice that the prefactor
√

N/(N + 1) in front of the nonlinear term in the equations of
motion (40) has been set equal to one under the hypothesis that N is very large.

3.4 Estimates

In order to find an estimate for the effective number of degrees of freedom involved in the
dynamics, we propose a simple argument, along the lines already sketched in [23, 24].

As a first fundamental remark, we observe that the small parameter α2εa enters (40)–(41)
only through the rescaling (38) of N . Suppose now that only consecutive low modes take
part to the dynamics. Then, their number will be of order kc , kc being the index of the highest
significantly excited mode. If, as a rough approximation, modes up to kc are excited with
comparable amplitude, then the height f1 of the plateau identifies with kc (or is proportional
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to it), so what we need is finding a good scaling law for kc . If N is large, then the second
sum in (39) practically extends to infinity; correspondingly the rescaled wavenumber ηkc is
not affected by the exact value of N , and this amounts to say that ηkc can only depend on
the number M0 of initially excited modes, i.e.

ηkc = g(M0), (42)

where g(M0) is some unknown function to be determined. This immediately leads to

f1 ≈ kc

N
≈ g(M0)(α

2εa)
1/4. (43)

The function g(M0) is expected to depend on the choice of the initial phases.
So we are left with the problem of determining g(M0). In order to do this, we observe that

the right hand side of (40) consists of two terms: the first one takes into account the effect of
dispersion, i.e. the detuning of the modes from the acoustic resonance, whereas the second
one takes into account the nonlinear mode coupling. If the first term prevails, for a given ηk ,
then mode k is weakly coupled to the other ones and, if initially switched off, it is expected
to remain unexcited. On the other hand, if the mode-coupling term prevails, the same mode
k is expected to be involved in the dynamics and to effectively exchange energy with the
other excited modes. Notice that the linear term in (40) is proportional to η3

k , while the
nonlinear one is proportional to ηk , so that modes with very low wavenumber are expected
to be strongly coupled to each other, with a strength that gets weaker the higher is k. In
conclusion, the energy initially stored into the first consecutive M0 modes is expected to
flow to higher modes, the cascade slowing down at that critical mode kc , such that for k � kc

the above described dispersion-nonlinearity balancing holds:

η3
kvk ≈ ηk

[
k−1∑

j=1

vk−j vj + 2
N /(α2εa)1/4−k∑

j=1

v∗
j vk+j

]
. (44)

As mentioned above, we identify the numerically measured specific effective number of
degrees of freedom f1 with kc/N . In order to get an estimate of kc we rewrite condition (44)
as

η2
k ≈ 1

vk

[
k−1∑

j=1

vk−j vj + 2
N /(α2εa)1/4−k∑

j=1

v∗
j vk+j

]
(45)

and, once more as a rough first approximation, we evaluate the right hand side of (45) on the
initial datum (41). To do this, we need to distinguish between the two cases of random and
of coherent initial phases, and as we shall see, in both cases we shall find indications, which
are fully consistent with the numerical results illustrated in Sect. 2.

3.4.1 Coherent Phases

If the phases ϕ0
k in the initial datum (41) are coherently linked to each other (e.g. they are

all equal), then the square bracket on the right hand side of (45), evaluated on the initial
datum (41), is of the order one: indeed the sum receives about M0 contributions, each of
order 1/M0. The factor in front of the square bracket is instead of order

√
M0, which yields

ηkc ≈ M
1/4
0 . (46)
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Taking into account the definition (39) of ηk , the latter estimate yields

f1 ≈ kc

N
≈ (M0α

2εa)
1/4. (47)

Now, if one initially excites a number of modes proportional to N , i.e. if M0 = Nf0 with
a small but finite f0, then the estimate (47) implies that the true control parameter of the
system is the total energy E � Nεa , and one has f1 ∼ E1/4. On the other hand, if one initially
excites a fixed number M0 of modes (as in the case of the original FPU experiment), the same
estimate holds but tells in this case that the control parameter is the specific energy εa and
f1 ∼ ε

1/4
a . So for coherent phases, for what concerns the behavior of f1, the estimate (47) is

in agreement with numerical results, both in the case of fixed M0 and of fixed f0 = M0/N .
Concerning the time-scale tc over which the energy sharing is expected to reach the

mode kc , we simply observe that from the rescaled equations (40), if ηk = ηkc ≈ M
1/4
0 , then

Tc ∼ 1/η3
kc

≈ M
−3/4
0 ; thus, by the rescaling of time performed in (38) one gets

tc ≈ 1/f 3
1 ≈ (M0α

2εa)
−3/4. (48)

Such a time-scale yields only a lower bound to the numerically measured time-scale τ1; see
however the remark at the end of the introduction.

3.4.2 Random Phases

Suppose now that the phases ϕ0
k appearing in (41) are independent random variables, each

being uniformly distributed over the interval [0,2π ]. Then the square bracket on the right
hand side of (45) has zero expectation value and its order of magnitude is given by its
root mean square, which is proportional to 1/

√
M0. Since the factor in front of it is 1/vk ≈

1/
√

M0 as well, condition (45), in the case of random phases, implies that ηkc is independent
of M0, and this in turn implies that

f1 ≈ kc

N
≈ (α2εa)

1/4, (49)

independent of M0. For what concerns the time scale tc , a reasoning identical to the one
performed above leads to the estimate

tc ≈ f −3
1 ≈ (α2εa)

−3/4, (50)

which constitutes again a lower bound to τ1.
We stress that in the case of random phases, estimate (49) predicts that the specific num-

ber of degrees of freedom sharing the energy in the system does not depend on the number
of the initially excited modes, and is a function of the specific energy only. Thus, the case of
random phases is the only one where the FPU scenario is maintained in the thermodynamic
limit.

4 Concluding Remarks

The FPU problem has attracted the attention of many researchers over more than half a cen-
tury, thus generating a fallout of questions, results, debates that contributed significantly to
the progress of the physics of nonlinear systems. The very inprint on modern science of the
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FPU problem is the idea that nonlinearity should reconcile dynamics with thermodynamics,
by identifying the main mechanisms leading to equilibrium in large systems. We cannot list
here the huge amount of achievements induced by this brilliant hypothesis, whose great suc-
cess is paradoxically a consequence of its early failure. Here, we think we made clear under
which conditions the FPU scenario, i.e. the presence of a long-life metastable state, can be
considered to be a genuine thermodynamic limit property. This depends in an essential way
on the choice of the phases in the initial conditions: a random choice is needed to maintain
the FPU scenario in the limit N → ∞, while coherent phases wipe it out. We have also
provided theoretical arguments and estimates, which explain the results obtained by direct
numerical simulations of the model.

This notwithstanding, the question of the physical consequences of these results remains
open. The main reason is that it is not clear how one could produce the ideal long-wavelength
“packet-like” initial conditions with different choices of the phases in a real chain of oscilla-
tors (e.g., atoms). Actually, selective long-wavelength acoustic excitations are quite difficult
to be produced in any experimental set-up, a fortiori if one would like to impose random
initial phases. In fact, a ballistic excitation in the form of a short energy pulse would corre-
spond to constant initial phases, while a suitable time modulation of the initial pulse should
be imposed in order to reproduce the conditions for random initial phases.

We want to conclude by mentioning shortly some interesting future perspectives. In fact,
we plan to extend the numerical studies and the analytic approach presented in this paper to
the purely quartic FPU model and also to initial conditions made of initially excited pack-
ets of short-wavelength Fourier modes. We expect that these studies should unveil further
“messages” which still lay incripted in the FPU model.

Acknowledgements We wish to thank Giacomo Gradenigo for a helpful discussion. This work has been
partially supported by MiUR, PRIN program no. 2005017208.

Appendix: Proof of the Proposition

Consider the KdV equation (17). The zero average, L = 2N + 2-periodic, unknown field U

admits the Fourier expansion

U(x, t) = 1√
L

∑

k∈Z\{0}
Ûk(t)e

2πikx/L, (A.1)

with

Ûk(t) = 1√
L

∫ L

0
U(x, t)e−2πikx/L dx, Ûk(t) = Û ∗

−k(t). (A.2)

One immediately finds

Ut = 1√
L

∑

k

dÛk

dt
e2πikx/L, Uxxx = 1√

L

∑

k

[(
2πik

L

)3

Ûk

]
e2πikx/L, (A.3)

as well as

UUx = ∂

∂x

U 2

2
= ∂

∂x

1

2L

∑

q,p

ÛqÛpe2πi(q+p)x/L
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= 1√
L

∑

k

[
2πik

L

1

2
√

L

∑

q

Ûk−qÛq

]
e2πikx/L; (A.4)

thus, the generic Fourier coefficient Ûk evolves according to

dÛk

dt
= −i

(
2πk

L

)3

Ûk + 2πk

L

iα

2
√

2L

∑

q

Ûk−qÛq . (A.5)

Letting k run in Z yields a system of infinitely many coupled ODEs that is equivalent to the
KdV equation (17).

We now work a little on the convolution sum on the right hand side of (A.5), by explicitly
separating the terms Ûk−qÛq with both q and k − q in the range from −N to N . Using
repeatedly the latter of (A.2), for any k > 0 one gets

∑

q∈Z\{0}
Ûk−qÛq =

+∞∑

q=1

Ûk−qÛq +
−1∑

q=−∞
Ûk−qÛq

=
k−1∑

q=1

Ûk−qÛq +
+∞∑

q=k+1

Û−(q−k)Ûq +
+∞∑

q=1

Ûk+qÛ−q

=
k−1∑

q=1

Ûk−qÛq +
+∞∑

q=1

Ûk+qÛ
∗
q +

+∞∑

q=1

Ûk+qÛ
∗
q

=
k−1∑

q=1

Ûk−qÛq + 2
N−k∑

q=1

Û ∗
q Ûk+q +

(
2

+∞∑

q=N−k+1

Û ∗
q Ûk+q

)
. (A.6)

Now, for any 1 ≤ k ≤ N , in the last row above the terms of the first two sums have indices
ranging from 1 to N , while the terms of the sum in brackets display at least one index
ranging from N + 1 on (precisely k + q ≥ N + 1). The Fourier–Galerkin truncation to the
first N modes consists exactly in neglecting the contribution of the latter quantity in the
convolution sum above. So, defining

�
(N)
k = 2

+∞∑

q=N−k+1

Û ∗
q Ûk+q

and recalling that

L = 2(N + 1),
2πk

L
= πk

N + 1
= ξk,

for any k = 1, . . . ,N , (A.5) can be rewritten as

dÛk

dt
= −iξ 3

k Ûk + iαξk

4
√

N + 1

(
k−1∑

j=1

Ûk−j Ûj + 2
N−k∑

j=1

Û ∗
j Ûk+j + �

(N)
k

)
. (A.7)

The latter system of equations, upon neglecting �
(N)
k and renaming Ûk(t) = uk(t), exactly

coincides with the system of equations (29) of the FPU resonant normal form. This ends the
proof of the proposition.
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